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Abstract: The use of electronic cigarettes (e-cigarettes) and heat-not-burn tobacco (HNBT), as popular
nicotine delivery systems (NDS), has increased among adult demographics. This study aims to assess
the effects on indoor air quality of traditional tobacco cigarettes (TCs) and new smoking alternatives,
to determine the differences between their potential impacts on human health. Measurements of
particulate matter (PM1, PM2.5 and PM10), black carbon, carbon monoxide (CO) and carbon dioxide
(CO2) were performed in two real life scenarios, in the home and in the car. The results indicated that
the particle emissions from the different NDS devices were significantly different. In the home and car,
the use of TCs resulted in higher PM10 and ultrafine particle concentrations than when e-cigarettes
were smoked, while the lowest concentrations were associated with HNBT. As black carbon and CO
are released by combustion processes, the concentrations of these two pollutants were significantly
lower for e-cigarettes and HNBT because no combustion occurs when they are smoked. CO2 showed
no increase directly associated with the NDS but a trend linked to a higher respiration rate connected
with smoking. The results showed that although the levels of pollutants emitted by e-cigarettes and
HNBT are substantially lower compared to those from TCs, the new smoking devices are still a source
of indoor air pollutants.

Keywords: indoor air quality; e-cigarettes; heat-not-burn tobacco; traditional smoking products;
tobacco smoke; passenger cars

1. Introduction

There is a scientific and medical consensus that cigarette smoking is causally related to lung cancer,
heart disease, emphysema and other serious diseases in smokers [1]. Every year, about 8 million
people worldwide die from tobacco use [2], and its consumption has been consistently declared as
the leading cause of morbidity and mortality in the world [3]. Tobacco smoke is a complex mixture
of numerous toxic and carcinogenic substances, containing more than 8000 chemicals produced by
distillation, pyrolysis and combustion reactions when tobacco is burnt during both the smoldering and
puffing of a cigarette [4].

Convincing scientific evidence has been available for a long time from experimental and
epidemiological studies demonstrating that exposure to environmental tobacco smoke (ETS), called
secondhand smoke (SHS) or passive smoke, also causes respiratory and heart diseases including lung
cancer in adult nonsmokers [5]. In 2017, 1.22 million deaths were caused by SHS [2] (approximately
15% of the deaths linked to tobacco). In children, SHS interferes with lung development, promotes
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allergic sensitization and asthma, and increases the risk of sudden infant death syndrome [6,7].
The International Agency for Research on Cancer has classified ETS as carcinogenic [5].

Following smoking bans introduced in many countries prohibiting tobacco smoking in public
spaces to minimize exposure, the tobacco industry initiated major investments in promoting new
(sometimes unregulated) products for consumers. These products were advertised as more appealing
than traditional cigarettes (TCs) in terms of social tolerance and health risks. Beliefs that these new
products are useful as cessation tools are associated with elevated odds of use in locations where TCs
are prohibited [8].

Examples of new smoking products are electronic cigarettes (e-cigarettes), which are
battery-powered devices that produce an aerosol from a water-based solution, and heat not-burn
tobacco (HNBT), which has been described as a hybrid between TCs and e-cigarettes.

Investigations (some of them developed by the tobacco industry) concluded that although these
products are still not entirely safe, they can be considered harmless compared to TCs and, if regulated
and controlled, a method to quit addiction to TCs [9–11].

Despite these claims, some research results suggest that inhaling propylene glycol-containing
e-cigarette aerosols may have adverse health effects, especially in the respiratory and cardiovascular
systems [12,13]. Vaping indoors can also release vegetable glycerin, nicotine, aldehydes and heavy
metals at levels that may pose a health risk to others [14,15]. In the United States, during 2019, more
than 2000 people developed serious lung damage in a poisoning outbreak associated with the use of
vaping devices, and 39 people have died from the condition. The United States Centers for Disease
Control and Prevention has recently identified vitamin E acetate, an ingredient added to illicit vaping
liquids, as the main cause. Recent research has also shown that HNBT produces toxic compounds
(e.g., formaldehyde), which are inhaled together with the aerosol [16]. It is also unclear if these new
products reduce or increase nicotine addiction [17]. It has been suggested that they can change the
epidemiological perception of smoking and likely attract adolescents into smoking dependence [18–20].

Due to the increasing popularity of e-cigarettes and HNBT as alternatives to TCs, the World Health
Organization (WHO) recognized the importance of monitoring and closely following the evolution of
new tobacco products, including products with potentially “modified risks”. There is a need for further
documentation and research about the emissions, impacts on indoor air quality, potential health risks
for passive smokers and benefits of the new devices [21]. This study evaluated the levels of particles,
black carbon, carbon monoxide and carbon dioxide during the smoking of e-cigarettes, HNBT and TCs
in homes and cars to assess the potential exposure of smokers and non-smokers.

2. Materials and Methods

2.1. Sampling Sites Description

Home measurements were performed in the sitting room of an occupied flat located in Lisbon,
Portugal (Figure 1). The sitting room had a volume of 73 m3 and was decorated with typical home
furniture. During the experiments, the room was occupied by two people. The air quality monitoring
equipment was placed 1.5 m away from the smoker with probes and absorption tubes pointed upwards,
at a height of approximately 1 m from the floor. Subjects were told to smoke as usual and not to blow
directly onto the equipment.

Car measurements were performed inside a medium volume car (Diesel Opel Corsa, from 2007)
traveling on a low traffic intensity route of 4.95 km at a mean speed of 34 km/h. The route was located
in the municipality of Loures, Portugal, between the neighborhoods of Bobadela and São João de Talha
(Figure 1). The real time monitors were placed in the back seat of the car, in open boxes that were
fastened with seatbelts to prevent their slipping. The probes or absorption tubes of the various devices
were positioned in the area corresponding to the breathing zone of a child. The study was carried out
with two occupants in the car: a driver (the smoker) and a non-smoking passenger seated in the front
passenger seat.
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Figure 1. Top: measurement locations within the Lisbon metropolitan area (Portugal)—car route in 
Loures municipality (right, top) and location of the studied flat in Lisbon municipality (right, 
middle). Bottom: arrangement of the measuring instruments in the home (left and center) and car 
(right). 

2.2. Smoking Devices 

Three different types of NDS were used in this work, all used by volunteer smokers: 
Traditional cigarettes (TC) are comprised of a blend of dried and cured tobacco leaves which 

are rolled into a thin rolling paper for smoking. TCs burn at temperatures of around 800 °C, 
generating smoke that contains harmful chemicals. This work used two types of cigarette of a 
commonly smoked brand in Portugal, Chesterfield blue (TC1) and Chesterfield menthol (blue caps) 
(TC2). 

E-cigarettes are battery-powered devices that produce an aerosol, from a water-based solution, 
containing a mixture of nicotine, glycerin, propylene glycol and flavoring chemicals, differing 
depending on the commercial brand. This work used two different types of e-cigarette: the one most 
common in the USA (JUUL: Slate JUUL, 4.5V, 8W, 5% nicotine pods) and that in Europe (Vape: 
IStick TC40W, nicotine free liquid). 

Heat-not-burn tobacco (HNBT) is comprised of a small cigarette made of elements that include 
a tobacco plug, hollow acetate tube, polymer-film filter, cellulose-acetate mouthpiece filter, and 
outer and mouth-end papers. It is equipped with electronics that heat specially prepared and 
blended tobacco, just enough to release a flavorful nicotine-containing vapor but without burning 
the tobacco. HNBT is heated up to temperatures below 350 °C in an effort to produce lower amounts 
of air toxicants [22]. This work used the iQOS from Philip Morris International, which is the most 
popular brand in Europe and America. 

2.3. Measurement Equipment and Protocol  

Continuous measuring portable monitors were used to carry out measurements of indoor 
concentrations of smoking related pollutants: 

Figure 1. Top: measurement locations within the Lisbon metropolitan area (Portugal)—car route in
Loures municipality (right, top) and location of the studied flat in Lisbon municipality (right, middle).
Bottom: arrangement of the measuring instruments in the home (left and center) and car (right).

2.2. Smoking Devices

Three different types of NDS were used in this work, all used by volunteer smokers:
Traditional cigarettes (TC) are comprised of a blend of dried and cured tobacco leaves which are

rolled into a thin rolling paper for smoking. TCs burn at temperatures of around 800 ◦C, generating
smoke that contains harmful chemicals. This work used two types of cigarette of a commonly smoked
brand in Portugal, Chesterfield blue (TC1) and Chesterfield menthol (blue caps) (TC2).

E-cigarettes are battery-powered devices that produce an aerosol, from a water-based solution,
containing a mixture of nicotine, glycerin, propylene glycol and flavoring chemicals, differing depending
on the commercial brand. This work used two different types of e-cigarette: the one most common
in the USA (JUUL: Slate JUUL, 4.5V, 8W, 5% nicotine pods) and that in Europe (Vape: IStick TC40W,
nicotine free liquid).

Heat-not-burn tobacco (HNBT) is comprised of a small cigarette made of elements that include a
tobacco plug, hollow acetate tube, polymer-film filter, cellulose-acetate mouthpiece filter, and outer and
mouth-end papers. It is equipped with electronics that heat specially prepared and blended tobacco,
just enough to release a flavorful nicotine-containing vapor but without burning the tobacco. HNBT is
heated up to temperatures below 350 ◦C in an effort to produce lower amounts of air toxicants [22].
This work used the iQOS from Philip Morris International, which is the most popular brand in Europe
and America.

2.3. Measurement Equipment and Protocol

Continuous measuring portable monitors were used to carry out measurements of indoor
concentrations of smoking related pollutants:

The DustTrack DRX monitor (8533 model, TSI, Dallas, TX, USA) was used to measure the
concentration of particles in a size range between 0.1 to 15 µm. It is a multi-channel, battery-operated,
data-logging device, which uses a light-scattering laser photometer that allows the simultaneous
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measurement of size-segregated mass fraction concentrations corresponding to PM1, PM2.5, respirable,
PM10, and total PM size fractions. The resolution of the equipment is ±0.1% of the reading or
0.001 mg/m3.

The CPC TSI 3007 was used to measure the number concentration of ultrafine particles (UFP)
with a size range between 0.01 and 1.0 µm (PM0.01–1). It operates by drawing an aerosol sample
continuously through a heated saturator, in which alcohol is vaporized and diffused into the sample
stream. Together, the aerosol sample and alcohol vapor pass into a cooled condenser where the alcohol
vapor becomes supersaturated. Here, particles grow quickly into larger alcohol droplets and pass
through an optical detector where they are counted. The accuracy of the equipment is ±20%, and the
resolution is 0.001 µg/m3.

The MicroAethalometer AE51 (AethLabs, San Francisco, CA, USA) was used to measure black
carbon. In the AE51, the air sample is collected by a T60 filter medium (Teflon coated glass fiber).
During operation, the microprocessor makes optical measurements, measures and stabilizes the airflow,
and calculates the mass concentration of black carbon. The measurement is performed at 880 nm,
and the concentration is obtained by the rate of change in the absorption of the transmitted light due to
the continuous deposition of black carbon in the filter and the determination of the attenuation of the
source light. The measurement precision is ±0.1 µg/m3, at a 150 ml/min flow rate, and the resolution is
0.001 µg.

The TSI 7545 (7545 model, TSI, Dallas, TX, USA) was used to simultaneously measure and log
CO, using an electro-chemical sensor, and CO2, with a non-dispersive infrared sensor. The accuracy of
the CO and CO2 concentrations is ±3% of the reading, and the resolution is 0.1 ppm for CO and 1 ppm
for CO2.

In homes, an initial non-smoking scenario was recorded for 2 hours and used as a control.
Afterwards, each NDS was continuously measured for 2 hours divided into eight 15-minute intervals.
Each interval consisted of NDS being smoked with 10 “puffs” for 5 minutes leaving a 10-minute decay
period between smokes.

In cars, the measurement for each NDS was made by completing three repetitions composed of
three different individual laps (Figure 2). Lap A consisted of a “cleaning lap” where all windows
were open and there was no smoking; Lap B was a “blank/control lap” where all windows were
closed except for the driver’s, which was opened halfway, with no smoking; and Lap C consisted of a
“smoking lap”, which replicated the conditions of the blank/control lap (all windows closed except for
the driver’s) with smoking. During Lap C, measurements were registered separately for the complete
lap (measurements C1), which included the pollutants’ decay, and only during the smoking period
within the lap, beginning when the cigarette was lit until it was turned off (measurements C2). Each lap
lasted between 8 and 10 minutes in which 10 “puffs” were taken per NDS, for an average smoke time
of 3 minutes and with a 7-minute decay period. To maintain the external conditions, the study test
drives took place outside of the traffic peak period.
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2.4. Emission Factors

Emission factors for the air pollutants emitted in homes were calculated using Equation (1) [23]:

EF = (Cave * ACH * V)/(nave), (1)

where EF is the emission factor of TCs, e-cigarettes or HNBT in µg/h; Cave is the timed-average pollutant
indoor concentrations during the smoking session (µg/m3); nave is the number of TCs, e-cigarettes or
HNBT being smoked during the average unit smoking time; ACH is the air change per hour (h−1);
and V is the room volume (m3).

Black carbon concentrations were used to calculate the ACH as it is a conservative and stable
pollutant, according to Equation (2) [23]:

ACH = (lnCini − lnCend)/t, (2)

where Cini is the initial concentration of black carbon (ng/m3), Cend is the final concentration of black
carbon (ng/m3), t is the total time (h) and ACH is the air change per hour (h−1).

2.5. Statistical Analysis

The analysis of the variance of the results was performed by non-parametric statistics for a
significance level of 0.05. The Mann–Whitney U test was used to test whether two independent groups
are likely to derive from the same population, considering the null hypothesis that the two samples
have the same median. Therefore, this test assessed whether observations in one sample tend to be
larger than observations in the other, such as in the case of air pollutant concentrations associated
with the different types of smoking product, the air pollutant levels for the background and smoking
periods, and the contribution of the particles’ sizes to the PM10 for the different NDS. The statistical
calculations were performed using the Statistica software.

3. Results and Discussion

3.1. Home Scenario

A comprehensive evaluation of the levels of smoking related pollutants in a home while TCs and
new smoking products (e-cigarettes and HNBT) were being smoked was performed. The concentrations
of the measured indoor air pollutants are summarized in Table 1, and the basic statistics are summarized
in Table S1 of the Supplementary Materials.
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Table 1. Air pollutant average concentrations and emission factors for traditional cigarettes (TC), e-cigarettes and heat-not-burn tobacco (HNBT) in the home. NDS,
nicotine delivery systems; UFP, ultrafine particles; BC, black carbon.

NDS PM1 (µg·m−3) PM2.5 (µg·m−3) PM10 (µg·m−3) UFP (particles·cm−3) BC (µg·m−3) CO (mg·m−3) CO2 (mg·m−3)

Concentrations

Control 21.0 22.6 25.4 4690 0.21 1.66 1810
TC 3470 3480 3480 110,000 13.2 4.16 2220

e-cigarette 1350 1370 1380 37,800 4.30 1.00 2890
HNBT 80.6 81.6 87.8 35,700 1.18 1.29 2640

Emission
Factors

NDS PM1 (µg·min−1) PM2.5 (µg·min−1) PM10 (µg·min−1) UFP (particles·min−1) BC (µg·min−1) CO (mg·min−1) CO2 (mg·min−1)

TC 844 845 846 2.46 × 109 3.37 0.92 604
e-cigarette 419 424 427 9.89 × 108 1.10 0.26 836

HNBT 21.9 22.2 23.7 1.20 × 109 0.36 0.33 720
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3.1.1. Particulate Matter

Figure 3 depicts the contribution of each particle size fraction (PM1, PM1–2.5, PM2.5–10) to the
PM10 for the studied NDS and control. The Mann–Whitney test showed that there was a significant
difference between the contributions of the three particle size ranges to the PM10 in the non-smoking
and NDS trials. PM1 was the dominant size fraction for TCs (98.6%), e-cigarettes (91.1%) and HNBT
(92.1%) followed by PM2.5–10 (TCs: 1.2%, e-cigarettes: 6.5% and HNBT: 6.8%), whereas in the control,
the contribution of the coarsest particles to the PM10 mass increased to 43.9%.
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Figure 3. Contribution of each particle size fraction (PM1, PM1–2.5, PM2.5–10) to the PM10 in the home
discriminated by NDS.

The use of TCs led to the highest increase in PM1 (3470 ± 1570 µg·m−3), PM2.5 (3480 ± 1570 µg·m−3)
and PM10 (3480 ± 1570 µg·m−3) concentrations, followed by the e-cigarettes (PM1: 1350 ± 1510 µg·m−3;
PM2.5: 1370 ± 1520 µg·m−3; PM10: 1380 ± 1520 µg·m−3) and HNBT (PM1: 80.6 ± 51.3 µg·m−3; PM2.5:
81.6 ± 51.3 µg·m−3; PM10: 87.8 ± 51.7 µg·m−3). The Mann–Whitney test showed that the concentrations
were significantly different between all types of cigarettes and that PM10 concentrations measured
during the smoking of TCs, e-cigarettes and HNBT were significantly higher than the levels measured
in the non-smoking period (165, 64 and 4 times higher, respectively).

Another study on smoke exposure [23] also described higher PM concentrations for TCs than
for e-cigarettes and HNBT. However, during the smoking of TCs, Ruprecht et al. [23] obtained PM1,
PM2.5 and PM10 concentrations 10, 23 and 2 times lower than those measured in the present study,
respectively. Schober et al. [24] also measured lower PM2.5 levels associated with the smoking of
e-cigarettes (197 µg·m−3) than those in the present study.

The differences between the NDS are likely caused by the fact that in TCs, there is a combustion at
a temperature <800 ◦C, which is lower than the temperature needed for complete combustion (around
1300 ◦C), while e-cigarettes and HNBT are only heated. According to Jiang et al. [25], heating tobacco
or e-liquids result in 95% less substances emitted than those produced by the combustion that occurs
in TCs. Schober et al. [26] showed that the vaping of the e-cigarettes releases more particles than
the use of HNBT. E-cigarette aerosols contain fine and ultrafine liquid particles that are formed from
supersaturated propylene glycol vapor, which can penetrate into the respiratory system and cause
oxidative stress and inflammatory reactions [27]. Pisinger and Dossing [28] mentioned the irritation of
the respiratory tract, evidence of an inflammatory process, a dry cough and an impairment of lung
function as short term effects of vaping.

The guidelines defined by the World Health Organization and the limit values according to the
Portuguese legislation for indoor air quality (PM2.5: 25 µg·m−3; PM10: 50 µg·m−3) were exceeded for
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TCs (139 and 70 times higher for PM2.5 and PM10, respectively), e-cigarettes (54 and 27 times higher)
and HNBT (3.2 and 1.7 times higher).

Figure 4 shows the temporal trends of PM10 levels measured during TC, e-cigarette, and HNBT
consumption. The PM10 concentrations associated with the TC and e-cigarette trials presented a
rapid increase above the background, while for HNBT, the increment was less pronounced but still
visible. PM10 peaks of more than 8000 µg·m−3 were reached for e-cigarettes and TCs. For TCs, PM10

levels showed a long decay period, causing an accumulation for each additional cigarette smoked,
whereas for both e-cigarettes and HNBT, PM10 showed a faster decay and no sign of accumulation.
Protano et al. [29] described a similar behavior, since a 1 hour time interval after each smoking each TC
was not enough to allow the PM concentration to decrease to the background levels. According to
Martuzevicius et al. [30], e-cigarette aerosols have been shown to have a half-life 100 times shorter than
TC emissions. The rapid evaporation of liquid droplets from e-liquids is the main reason for the quick
decay and the lack of atmospheric accumulation of PM during the use of e-cigarettes.Int. J. Environ. Res. Public Health 2020, 17, x 9 of 20 
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The PM1, PM2.5 and PM10 emission factors were the highest for TCs, followed by e-cigarettes
and HNBT. The emission factors calculated by Ruprecht et al. [23] for TCs were lower for PM1

(320 ± 132 µg·min−1) than those calculated in this study (844 µg·min−1), but higher for PM2.5 and PM10

(1480 ± 570 and 1540 ± 570 µg·min−1, respectively) than the ones calculated here (845 and 846 µg·min−1

for PM2.5 and PM10, respectively). The same study found that both the e-cigarette and HNBT emission
factors were non-detectable, significantly differentiating themselves from the elevated values obtained
for the present work.

3.1.2. Ultrafine Particles

The Mann–Whitney test showed that the UFP number concentrations were significantly higher during
all the smoking sessions than during the background, but the levels for TCs (110,000 ± 36,000 particles·cm−3)
stood out compared with those for e-cigarettes (37,800 ± 19,000 particles·cm−3) and HNBT
(35,700 ± 11,500 particles·cm−3). The levels for TCs, e-cigarettes and HNBT were 23.4, 8.1 and 7.6
times higher than background, respectively. The UFP concentrations were higher when combustion
was occurring i.e., during TC use [25]. This fact explains why both e-cigarettes and HNBT showed
lower UFP concentrations compared to TCs.

Atmospheric UFP are mainly composed of organic compounds, trace metal oxides and elemental
carbon [31]. Ruprecht et al. [23] found that for selected metals, trace elements and organic compound
emission factors varied between TCs, e-cigarettes and HNBT. This means that the type of NDS used
highly influences the UFP number concentration. Avino [32] also showed that during a TC test,
the increase in the particle number concentration is due to the emission during the smoking activity of
particles with a mode of roughly 100 nm, while the e-cigarettes emit particles sized with a mode of
about 30 nm.

The UFP number concentrations for TCs and HNBT were similar to those measured by
Ruprecht et al. [23] (123,000 ± 37,000 and 27,700 ± 10,300 particles·m−3, respectively). For e-cigarettes,
Ruprecht et al. [23] measured concentrations 4.4 times lower (8660 ± 560 particles·m−3) and
Schober et al. [24] obtained concentrations 1.6 times higher (61,700 ± 16,000 particles·m−3) than
in the present study. The discrepancies found are likely due to high variability in emissions due to the
types of equipment and e-liquid being used. Schober et al. [24] used a Red Kiwi (second generation
e-cigarette), which is larger and has more wattage than the Elips Series C (second generation e-cigarette)
used by Ruprecht et al. [23] and smaller than the third generation e-cigarettes used in this study.
Moreover, Zhao et al. [33] also showed that the heating coil temperature, puff duration and puff flow
rate in e-cigarettes influence the number concentration of the particles.

The real-time UFP number concentration plot presented in Figure 4 shows an initial cumulative
behavior in TCs that reaches a plateau at around 150,000 particles per cm3. The UFP temporal pattern
for e-cigarettes and HNBT shows a behavior similar to the one obtained by Protano et al. [29], which is
characterized by non-accumulation and rapid decay.

The UFP emission factors were the highest for TCs, followed by e-cigarettes and HNBT.
The emission factors obtained for TCs, e-cigarettes and HNBT by Ruprecht et al. [23] (130 × 1010,
1.1 × 1010 and 5.3 × 1010 particles per min) were much higher than those obtained in the present study.

3.1.3. Black Carbon

The highest black carbon concentrations were measured while TCs were being smoked
(13.2 ± 5.2 µg·m−3), followed by e-cigarettes (4.3 ± 10.4 µg·m−3) and HNBT (1.2 ± 0.7 µg·m−3),
which are values approximately 63, 20 and 5.6 times higher than those in the non-smoking trials,
considering the values presented in Table 1.

Black carbon particles are produced due to the incomplete combustion of carbon-containing
materials [34]. As the tobacco or tobacco-derived products within TCs are burned at temperatures
below the 1300 ◦C threshold needed for complete combustion to occur [25], these NDS have been
directly identified as black carbon emission sources [35,36].
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On the other hand, probably due to the fact that they evaporate a liquid charge rather
than combusting it, studies conducted by van Drooge et al. [37] and Ruprecht et al. [23] have
shown no connection between the use of e-cigarettes and black carbon emissions. According to
van Drooge et al. [37], the difference between the black carbon concentrations recorded during
the non-smoking and e-cigarette smoking scenarios are directly linked to outdoor black carbon
concentrations, thus indicating that black carbon is not an emission of the e-cigarette vapor. This is
the reason why in the study by Ruprecht et al. [23], the temporal patterns show lower black carbon
concentrations during e-cigarette smoking than in the control test, similarly to in the present work.

Figure 4 shows that the black carbon measured during the TC smoking trials presented an
initial cumulative behavior, reaching a plateau around 20.0 µg·m−3. Both e-cigarettes and HNBT had
non-cumulative effects and rapid decays, besides the high spikes observed.

3.1.4. Carbon Monoxide

The Mann–Whitney test shows that the use of TCs led to a significant increase in CO levels in
homes to 4.2± 1.8 mg·m−3, a concentration 2.5 above background levels without smoking. The smoking
of HNBT and e-cigarettes had no effect on the CO concentration, as already demonstrated by previous
studies [9,24,37], because CO is a byproduct of the incomplete combustion of carbonaceous matter that
occurs in TCs [38]. The real time CO concentration plotted in Figure 4 shows that both e-cigarettes and
HNBT had a steady, non-cumulative behavior, unlike the TCs, which had a cumulative and incremental
behavior without reaching a plateau.

None of the NDS surpassed the guidelines defined by the World Health Organization nor the
limit values according to Portuguese legislation (10 mg·m−3 for 8 h; 30 mg·m−3 for 1 h).

3.1.5. Carbon Dioxide

The CO2 concentrations were 2890 ± 660 mg·m−3 for e-cigarettes, 2640 ± 680 mg·m−3 for HNBT
and 2220 ± 520 mg·m−3 for TCs; approximately 1.6, 1.5 and 1.2 times higher than control levels,
respectively. All the NDS as well as the control scenario (also with two occupants) exceeded the
recommended World Health Organization CO2 maximum concentration (1800 mg·m−3).

The real time CO2 measurements (Figure 4) show similarities in the incremental behavior of all
the NDS and the control. The concentrations steadily increased, reaching almost double their initial
values after one hour and roughly thrice after two hours, indicating that exhalations during NDS use
did not increase CO2 concentrations in peak increments as with other pollutants. A study conducted
by Sadjadi and Minai [39] states that this increase in CO2 concentrations is related to an increase in the
respiration rate of smokers as a response to inflammation in order to compensate for the decrease in
oxygen inhalation during smoking rather than to the emissions originating from NDS use.

3.2. Car Scenario

Smoking in the interior of cars is of particular concern for the smoker and other non-smoking
passengers, principally for the most susceptible such as children and pregnant woman, because the
concentrations of potentially harmful substances are expected to be high due to the reduced volume
of the cabin. The mean concentrations measured during the test drives are summarized in Table 2,
and for the basic statistics, Table S2 from the Supplementary Materials can be consulted.



Int. J. Environ. Res. Public Health 2020, 17, 3455 11 of 19

Table 2. Air pollutant average concentrations measured in the car for traditional cigarettes (TC1 and
TC2), e-cigarettes (JUUL and Vape) and heat-not-burn tobacco (HNBT).

NDS Lap PM1
(µg.m−3)

PM2.5
(µg.m−3)

PM10
(µg.m−3)

UFP
(particles.cm−3)

BC
(µg.m−3)

CO
(mg.m−3)

CO2
(mg.m−3)

TC1
Control 46.2 49.5 57.2 31,733 0.83 0.81 1059

Smoking 963 967 973 141,000 2.11 3.02 1130

TC2
Control 43.4 45.3 49.7 42,700 1.46 1.10 1090

Smoking 905 907 912 142,000 6.11 4.12 11,900

JUUL Control 19.2 21.1 24.5 28,500 0.57 0.43 883
Smoking 129 131 134 47,800 1.15 0.82 982

Vape Control 21.0 21.8 23.3 17,600 0.59 0.43 956
Smoking 1150 1170 1170 56,300 0.70 1.09 1090

HNBT
Control 14.5 15.9 18.3 7940 0.61 0.45 925

Smoking 23.3 24.7 26.7 22,100 0.46 0.74 1020

3.2.1. Particulate Matter

Figure 5 depicts the contribution of each particle size fraction (PM1, PM1–2.5, PM2.5–10) to the
PM10 for the studied NDS during the different laps. Although no difference was observed between
the cleaning and control laps, the Mann–Whitney test indicated a significant difference between the
non-smoking and the NDS trials. For the NDS, PM1 was the dominant size fraction for TC1 (98.3%),
TC2 (99.2%), JUUL (95.3%), vape (97.9%) and HNBT (87.9%), with negligible contributions from the
other two fractions. In the control, the two coarser fractions (PM1–10) have a significantly higher
contributions during the smoking periods, representing between 9.8% and 21.5% of the PM10 mass.Int. J. Environ. Res. Public Health 2020, 17, x 12 of 20 
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The highest PM10 concentrations were measured while the vape was smoked (1170 ± 1160),
followed by TC1 (973 ± 597 µg·m−3), TC2 (912 ± 881 µg·m−3), JUUL (134 ± 190 µg·m−3) and HNBT
(26.7 ± 22.7 µg·m−3). The Mann–Whitney test showed that the PM10 concentrations were significantly
different for all the types of cigarette except for TC1 and TC2, between which significant differences
were not observable.

Figure 6 shows the temporal evolution of the PM10 concentrations. There is an incremental
and cumulative behavior for TC1 and TC2, reaching a plateau at around 1000 µg·m−3 before the
concentrations start to slowly decrease back to control levels. The JUUL, vape and HNBT time patterns
show significant concentration spikes during use but then rapid decreases in concentration.Int. J. Environ. Res. Public Health 2020, 17, x 13 of 20 
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Figure 6. PM10 concentrations measured in the car during traditional cigarette (TC1 and TC2),
e-cigarette (JUUL and Vape) and heat-not-burn tobacco (HNBT) consumption.

Geiss et al. [40] measured PM in the vehicle cabins and obtained an average PM2.5 concentration
in the cars of 26.9 µg·m−3, similar to those found in the control level measurements in the present study.
Schober et al. [26] studied NDS emissions in seven different vehicles and observed higher mean PM2.5

concentrations for TCs (64–1990 µg·m−3) when compared to vape (8–490 µg·m−3), HNBT (6–34 µg·m−3)
and control (4–11 µg·m−3). In the present study, the e-cigarette vape showed the highest mean levels of
PM2.5 and PM10, even when comparing with TCs.

3.2.2. Ultrafine Particles

The highest UFP concentrations were measured while TC2 were being smoked
(142,000 ± 42,000 particles·cm−3), followed by TC1 (141,000 ± 56,000 particles·cm−3), vape
(56,300 ± 39,700 particles·cm−3), JUUL (47,800 ± 12,700 particles·cm−3) and HNBT
(22,100 ± 16,800 particles·cm−3). These values are 3.3, 4.4, 3.2, 1.7 and 2.8 times higher than those in
the control scenario, respectively.

TC1 and TC2 showed a longer decay period than the other NDS. Clear spikes were observed for
JUUL, HNBT and vapes when “puffs” were taken, but the patterns did not show accumulation and
had rapid decays (Figure 7).
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Figure 7. Ultrafine particle concentrations measured in the car during traditional cigarette (TC1 and
TC2), e-cigarette (JUUL and Vape) and heat-not-burn tobacco (HNBT) consumption.

The UFP concentrations measured during TC1 and TC2 consumption were significantly higher
than for the other NDS, likely due to the combustion that occurred. As previously stated, TCs burn at
temperatures of 800 ◦C, which leads to incomplete combustion, while vape, JUUL and HNBT are only
heated. TC1 and TC2 also contain heavy metals and hydrocarbons [41], both of which can be found in
the chemical composition of atmospheric UFP [31].

The study developed by Schober et al. [26] showed that TCs also presented the highest
UFP levels (ranging from 24,300 to 236,000 particles·cm−3), but with HNBT (mean value of
37,900 ± 38,100 particles·cm−3, ranging from 16,700 to 124,000 particles·cm−3) having higher UFP
levels than e-cigarettes (mean value of 31,000 ± 24,100 particles·cm−3, ranging from 10,200 to
74,000 particles·cm−3) in 71% of the cases.

3.2.3. Black Carbon

The black carbon concentrations were the highest for TC2 (6.1 ± 4.0 µg·m−3), followed by TC1
(2.1 ± 0.9 µg·m−3), JUUL (1.2 ± 0.6 µg·m−3), vape (0.7 ± 1.0 µg·m−3) and HNBT (0.5 ± 0.3 µg·m−3),
representing levels 4.2, 2.5, 2.0, 0.4 and 0.7 times higher than those in the control scenario, respectively.
The incomplete combustion that occurs in TCs explains the comparably higher concentrations obtained
for this type of NDS.

The real time black carbon concentrations presented in Figure 8 show an incremental behavior
during the use of TC1 and TC2 and a steady decrease after smoking. The JUUL presented a
non-cumulative effect, a rapid decay and spikes in concentrations during its use. Both the vape and
HNBT patterns showed a non-cumulative effect and rapid decay like the pattern for JUUL, but no
spikes in concentrations were observed.
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e-cigarette (JUUL and Vape) and heat-not-burn tobacco (HNBT) consumption.

The concentrations in the present study were lower than the black carbon concentrations measured,
in vehicles from non-smokers, by Lee et al. [42] (1.9 µg·m−3), Cunha-Lopes et al. [43] (5.1 ± 7.3 µg·m−3)
and Correia et al. [44] (5.5 ± 5.9 µg·m−3), except for TC1 and TC2. Onat et al. [45] measured a set of
indoor pollutants in different commuting vehicles in Istanbul and registered, for cars, an average black
carbon concentration of 2.3 ± 1.3 µg·m−3 with closed windows, similar to the results obtained in this
study for TC1. Fruin et al. [46] showed that driving behind vehicles in traffic with open windows has a
significant effect on the black carbon exposure. This work measured very high levels of black carbon
in cars driving behind transit buses reaching up to 92 µg·m−3. This would mean that black carbon
concentrations in vehicles can be much more related to the outdoor environment rather than to indoor
sources, even with a significant emitting source such as an NDS.

3.2.4. Carbon Monoxide

Statistical tests showed that the CO concentrations for TC1 (3.0 ± 1.5 mg·m−3) and TC2
(4.1 ± 1.6 mg·m−3) were significantly higher than for vape (1.1 ± 0.3 mg·m−3), JUUL (0.8 ± 0.1 mg·m−3)
and HNBT (0.7 ± 0.3 mg·m−3). Figure 9 shows an incremental and cumulative behavior for TC1
and TC2. E-Cigarettes, JUUL and HNBT show a steady behavior regarding concentrations, with no
increases or accumulation occurring during their use. The observed differences are likely linked to the
incomplete combustion processes in TC1 and TC2.

Northcross et al. [47] measured CO concentrations in cars during the smoking of TCs and obtained
an average concentration of 2.8 ± 1.0 mg·m−3 when all windows were half open, while a study
conducted by Dirks et al. [48] measured CO concentrations in vehicles ranging from 0.7 to 3.2 mg·m−3,
depending on the window conditions and the ventilation setting in the car.
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3.2.5. Carbon Dioxide

The CO2 concentrations were the highest during TC2 consumption (1190 ± 50 mg·m−3), followed
by TC1 (1130 ± 90 mg·m−3), vape (1090 ± 60 mg·m−3), HNBT (1020 ± 60 mg·m−3) and JUUL
(982 ± 43 mg·m−3).

Smoking is linked with an increase in respiration rate, which increases CO2 concentrations in
indoor environments (Figure 10).Int. J. Environ. Res. Public Health 2020, 17, x 17 of 20 
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Goh et al. [49] measured CO2 concentrations ranging between 810 and 1080 mg·m−3 in cars, similar
to the results for the cleaning laps in the present study. The same study obtained CO2 concentrations
for two occupants (with all the windows closed) of 2160 mg·m−3 nine minutes after the beginning
of the experiment. Even without smoking, these values are almost twice the levels measured in the
present study for TC2 (1190 mg·m−3).

4. Conclusions

Although traditional tobacco smoking has been in decline since the 1980s, newer generations of
NDS have been steadily increasing in popularity ever since they were introduced into the market in
2013. This accelerated growth, together with their recent appearance, has led to an impendent need for
studies to be developed measuring the effects of such.

The present study allowed the evaluation of the concentrations of smoke pollutants, more
specifically, the particulate matter and gases originating from different types of NDS in real life scenarios
where smoking is still common among electronic nicotine delivery systems users, which consider these
a safer option than TCs.

The results showed that although the levels of pollutants emitted by e-cigarettes and HNBT are
substantially lower compared to those from TCs, the new smoking devices are still a source of indoor
air pollutants. All smoking options are avoidable sources of indoor pollutants, and to protect the
health of smokers and non-smokers, they should not be used in homes and cars.

The presented results pertain to a single brand of HNBT and specific brands of e-cigarettes and
may not represent the possible variability among different brands or manufacturers. Additionally,
the configurations of the equipment as well as the e-liquid charges used for each e-cigarette may not
represent other brands or configurations of these devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/10/3455/s1,
Table S1: Concentrations of air pollutants measured in the home for traditional cigarettes (TC1 and TC2),
e-cigarettes (JUUL and Vape), and HNBT, Table S2: Concentrations of air pollutants measured in the car for
traditional cigarettes (TC1 and TC2), e-cigarettes (JUUL and Vape), and HNBT.
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